

New Opportunities in Predictive and Pro-active Traffic Safety Evaluation and Management in the Era of Smart Cities

Ы

1.11

집

Dr. Kaan Ozbay | Professor and Director of C2SMART University Transportation Center Collaborator: **Di Yang**, Research Assistant, C2SMART

Department of Civil and Urban Engineering Tandon School of Engineering New York University, U.S.A.

Vision Zero Town + Gown Research on the Road 06/10/2021

Safety Facts

- Each year, there are about 1.35 million road traffic deaths and 50 million injured worldwide.
- Road crashes are expected to rise to the 7th leading cause of death by the year 2030.

Surrogate Safety Measures

- Surrogate Safety Measures (SSMs):
 - Used to identify traffic conflicts or "near-misses".
 - Extracted from vehicle trajectories.

Traditionally, the collection of vehicle trajectories is relatively difficult or time consuming.

• Traffic safety risk can thus be reflected by the identified traffic conflicts.

Emerging Technologies

 In the era of smart cities, the collection of vehicle trajectories becomes easier due to various emerging technologies.

Connected Vehicles

Laureshyn, A., & Varhelyi, A. (2018). The Swedish Traffic Conflict Technique: observer's manual.;

c2smart.engineering.nyu.edu

Drones

2

....

https://wydotcvp.wyoroad.info/: http://myphonefactor.in/2012/04/sensors-used-in-a-smartphone/: https://www.tomstechtime.com/post/2019/01/12/whats-the-best-drone-video-editing-software

USDOT NYC Connected Vehicle Pilot Deployment

New York City is one of three **Connected Vehicle (CV) pilot deployment** sites selected by USDOT to demonstrate the benefits of this new Connected Vehicle technology.

The CV technology is a new tool to help NYC reach its **Vision Zero** goals to eliminate traffic related deaths and reduce crash related injuries and damage to both the vehicles and infrastructure.

3000+ vehicles

450+ Roadside Units

14 Mobility and Safety Applications (include one that supports people with visual disabilities)

NYC Connected Vehicle pilot deployment Website: https://cvp.nyc

USDOT Other Connected Vehicle Pilot Deployment

Щ,

Wyoming Connected Vehicle Pilot

- Objective: improving safety and travel reliability on i-80 in Wyoming
- Scope:
 - 400 instrumented vehicles
 - 75 roadside units

Tampa Connected Vehicle Pilot

- Objective: transform the experience of drivers, transit riders and pedestrians in downtown Tampa by preventing crashes, enhancing traffic flow, improving transit trip times and reducing emissions of greenhouse gases.
- Scope:
 - Over 1000 privately owned vehicles
 - I0 buses
 - 8 streetcars
 - 46 roadside units

c2smart.engineering.nyu.edu

https://wydotcvp.wyoroad.info/; https://theacvpilot.com/;

Video-Based Safety Evaluation (Work funded by AIG)

Ű Ī NYU

- Goals: Advance data-driven traffic analytics to enhance Global Resilience
- Objectives:
 - Propose a novel approach for examining traffic safety performance at intersections
 - Quantify traffic conflicts using developed "surrogate" safety measures
 - Develop automatic data acquisition, analysis and modeling approaches based on computer vision techniques

c2smart.engineering.nyu.edu

8

Fig. 1: Original video recording Fig. 2: Extract feature points using Kanade-Lucas-Tomasi (KLT) Feature Tracker

Fig. 3: Group feature points using Dirchlet process mixture algorithm Fig. 4: Convert coordinates to relative distances

NYU UrbanMITS lab (in collaboration with AIG), Development of A Comprehensive Experimental and Theoretical Methodology for Video-based Safety Assessment

Video-Based Safety Evaluation

Estimated Surrogate Events based on Automatic Tracking Results

c2smart.engineering.nyu.edu

9

Proactive Safety Evaluation & Monitoring

CONNECTED CITIES WITH SMART TRANSPORTATION

c2smart.engineering.nyu.edu

Traffic risk can be quantified.

Suitable for proactive safety monitoring.

- Detect potential safetyrelated anomalies that may cause high traffic risk.
- Provide intervention.

10

H

님

₽

Characteristics of Surrogate Events

Surrogate Events

Frequent

 Large amount of conflict data can be collected in a relatively short period of time (e.g., hours or days)

Detailed temporal and spatial information

e.g., accurate at the second and the lane level

How to represent safety risk? What method should we use to capture these characteristics?

c2smart.engineering.nyu.edu

Crashes

Rare events

• Often take months or years to accumulate.

Rough location and time information

e.g., at the intersection level

Functional Data Analysis

- A typical example
 - X axis: 12 months from January to December
 - Y axis: mean temperature
 - Each curve: one weather station in Canada

Formally, FDA is

- A branch of statistics that analyzes data providing information about curves, surfaces or anything else varying over a continuum.
- The physical continuum over which these functions are defined is often time.

....

Functional Data Analysis for Proactive Safety Monitoring

- Analogously, for signalized intersections with pre-timed signal mode.
 - Model time series of traffic risk to detect green intervals with safety-related anomalies.

c2smart.engineering.nyu.edu

Safety Risk:

1.11

Number of surrogate events / number of vehicles (unit: second)

Safety-related anomalies:

긥

- **Type I**: vehicles commit dangerous or illegal lane changing behaviors.
- Type 2: vehicles slow down or stop unexpectedly or abruptly.
- **Type 3**: vehicles blocked by other vehicles in the crossing directions.

Key Steps in Functional Data Analysis

- Two key steps of using FDA for proactive safety monitoring:
 - Step I: Data representation Functional data smoothing
 - Convert from discrete observations to continuous functions for further mathematical analysis.
 - Step 2: Extract functional outlier detection measures from the estimated functional curves for outlier detection.

Data Collection

Location: Flatbush Avenue & Tillary Street

- Study movement: the northbound throughput (NBT) direction.
- Time: Morning peak period (6 AM to 8 AM)

1.[1]

4

Data Collection

Extraction of vehicle trajectories

- Anonymous vehicle trajectories were extracted from the recorded UAV videos by a company called Data From Sky.
 - Longitude & latitude, speed, acceleration, and vehicle type

Time	Vehicle ID	Vehicle Type	Latitude	Longitude	Speed	Acceleration (longitudinal)	Acceleration (lateral)
0.1	1	Car	40.695942	-73.984531	12.5543	-0.0181	0.0647
0.2	1	Car	40.695941	-73.984527	12.5437	-0.0427	0.0831
0.3	1	Car	40.695941	-73.984523	12.5241	-0.0675	0.0998
0.4	1	Car	40.695941	-73.984519	12.4954	-0.0961	0.1202
0.5	1	Car	40.695941	-73.984515	12.5055	-0.0578	0.0889
0.6	1	Car	40.695941	-73.98451	12.4794	-0.085	0.1084
0.7	1	Car	40.69594	-73.984506	12.4443	-0.1091	0.1134
0.8	1	Car	40.69594	-73.984502	12.4024	-0.1223	0.1166
0.9	1	Car	40.69594	-73.984498	12.3571	-0.1298	0.1112
1	1	Car	40.69594	-73.984494	12.3109	-0.1268	0.1004

16

.h

Findings:

- Distinct separation between outliers and non-outliers.
- Peaks at the beginning of the green interval.
 - Caused by early acceleration of vehicles in queue before the acceleration of the vehicles in front.
 - This pattern cannot be revealed if traffic risk is aggregated into summary statistics of any kind.

Results: Smoothing Functional Curves

NYU

Results: Receiver Operating Characteristics (ROC) & Precision-Recall (PR) curves

Findings

RT TRANSPORTATION

- Overall, ROC curves of all the functional outlier detection measures are above the random classifier line.
- PR curves show similar patterns.

measures are compared.

----- Random classifier

Results: Area Under the Curve (AUC)

9

- Findings:
 - Best outlier detection measures is consistent for both ROC and PR AUC values.
 - Consistent between ROC-AUC and PR-AUC
 - Good separation between normal and abnomal cases are achieved.

	FMD	MD	RP	RPD	RT	FSD	KFSD 🗸	Bivariate Score Depth	Bivariate Score Density
AUC-ROC	0.70	0.82	0.79	0.82	0.77	0.77	0.85 🗸	0.65	0.72
AUC-PR	0.45	0.79	0.76	0.71	0.57	0.77	0.80 🗸	0.42	0.68

[hf]

1.11

Practical Implementation

Step I: Collect real time data feed

Step 3: Calculate outlier detection measure Step 4: NYU

Identify anomalies based on a preset threshold.

Ч

....

9

립

Reservoir of historically identified normal risk functions

20

Our Paper

- Yang, D., Ozbay, K., Xie, K., Yang, H., Zuo, F., Sha, D., 2021. Proactive safety monitoring: A functional approach to detect safety-related anomalies using unmanned aerial vehicle video data. Transportation Research Part C: Emerging Technologies 127, 103130.
 - DOI: <u>https://doi.org/10.1016/j.trc.2021.103130</u>

Transportation Research Part C: Emerging Technologies

Volume 127, June 2021, 103130

Proactive safety monitoring: A functional approach to detect safety-related anomalies using unmanned aerial vehicle video data

21

Di Yang * 🎗 🖾, Kaan Ozbay * 🖾, Kun Xie ^b 🖾, Hong Yang ^c 🖾, Fan Zuo * 🖾, Di Sha * 🖾

c2smart.engineering.nyu.edu

1.11

What About Crash Data?

- Only surrogate events are used above to quantify traffic safety risk.
- However, both crash data and surrogate events can provide information regarding traffic safety conditions.
 - Most of the studies in the literature used only one of these.
 - However, this may lead to inaccurate safety estimates, which accordingly may lead to incorrect decision making and waste of sources.
- It is important to combine both of these together in a robust way.

Tarko, A., 2018. Surrogate measures of safety. Safe mobility: Challenges, methodology and solutions. Emerald Publishing Limited, 383-405.

Integration of Crashes and Safety Risk for Safety Analysis

- Integrating both crash data and safety risk may result in more comprehensively evaluation of traffic safety.
- Methods we proposed:

Our Research

- Yang, D., Xie, K., Ozbay, K., Yang, H., Budnick, N., 2019. Modeling of time-dependent safety performance using anonymized and aggregated smartphone-based dangerous driving event data. Accident Analysis and Prevention 132, 105286.
- Yang, D., Xie, K., Ozbay, K., Zhao, Z., Yang, H., 2021. Copula-based joint modeling of crash count and conflict risk measures with accommodation of mixed count-continuous margins. Analytic Methods in Accident Research 31, 100162.
- Yang, D., Xie, K., Ozbay, K., Yang, H., 2021. Fusing crash data and surrogate safety measures for safety assessment: Development of a structural equation model with conditional autoregressive spatial effect and random parameters. Accident Analysis and Prevention 152, 105971.

24

Accident Analysis & Prevention Volume 132, November 2019, 105286

Modeling of time-dependent safety performance using anonymized and aggregated smartphonebased dangerous driving event data

Di Yang ^a 🖾, Kun Xie ^b 🔍 🖾, Kaan Ozbay ^e 🖾, Hong Yang ^d 🖾, Noah Budnick ^e 🖾

Analytic Methods in Accident Research Volume 31, September 2021, 100162

Copula-based joint modeling of crash count and conflict risk measures with accommodation of mixed count-continuous margins

Di Yang Ӓ 🖾, Kun Xie 🖾, Kaan Ozbay 🖾, Zifeng Zhao 🖾, Hong Yang 🖾

Accident Analysis & Prevention Volume 152, March 2021, 105971

Fusing crash data and surrogate safety measures for safety assessment: Development of a structural equation model with conditional autoregressive spatial effect and random parameters

The Future of Proactive Safety Management

- Other potential approaches for integrating surrogate events and crashes
- Other potential use cases of functional approach in transportation safety

c2smart.engineering.nyu.edu

- Facilitate proactive safety management for signalized intersections
- Calibration of microsimulation models for safety evaluation
- Signal timing optimization accounting for safety
- Ramp-metering control strategy development accounting for safety

Comprehensive Evaluation of Feedback-Based Freeway Ramp-Metering Strategy by Using Microscopic Simulation: Taking Ramp Queues into Account

Kaan Ozbay, Ilgin Yasar, Pushkin Kachroo

First Published January 1, 2004 Research Article https://doi.org/10.3141/1867-11

Accident Analysis & Prevention Volume 38, Issue 2, March 2006, Pages 279-288

Quantifying effects of ramp metering on freeway safety 🖈

Chris Lee^a, Bruce Hellinga^b A ⊠, Kaan Ozbay^c

25

Ы https://jackuldrich.com/blog/future/questioning-a-different-and-better-future-in-4-minutes/attachment/future-road-ahead-with-question-mark/

Contacts

c2smart.engineering.nyu.edu c2smart@nyu.edu

Dr. Kaan Ozbay kaan.ozbay@nyu.edu

C2SMART Center New York University Tandon School of Engineering 6 MetroTech Center, Brooklyn, NY 11201